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Abstract This article describes the finite-field (FF)

approach for calculating static (hyper)polarizabilities based

on the divide-and-conquer (DC) method. The method is

assessed by the Hartree–Fock (HF) and post-HF calcula-

tions of p-conjugated model systems: a terminal donor or

acceptor substituent on polyene chains. The DC–FF

approach enables the evaluation of molecular polarizabil-

ities with highly accurate coupled-cluster theory. Numeri-

cal assessments demonstrate that the (hyper)polarizabilities

calculated by the present DC–FF method agree with

the conventional FF results to within a few percent by

employing an appropriate buffer size.

Keywords Divide-and-conquer � Finite-field method �
Hyperpolarizability � Linear-scaling � Nonlinear optics �
Correlation theory

1 Introduction

In recent years, nonlinear optical materials have received a

lot of attention due to their potential utilization in electro-

optical devices [1–4]. Organic p-conjugated systems, such

as a polyene chain, are of particular interest because their

properties can be easily changed by chemical modification.

Therefore, various theoretical studies on the design of

nonlinear optical molecules, polymers, and other materials

with desired properties have been performed so far. As part

of these studies, there have been attempts to evaluate the

nonlinear optical properties by ab initio calculations.

However, ab initio quantum chemical treatment of the

nonlinear optical materials is difficult in the standard

fashion because of its high computational scaling with

respect to the system size. To enable large-scale ab initio

calculations, several groups have proposed the linear-

scaling electronic structure methods.

Development of linear-scaling self-consistent field

(SCF) molecular orbital (MO) method started from the

pioneering work by Imamura et al. [5] in 1991. Their

elongation method was firstly proposed as the theoretical

polymerization scheme for treating 1-D periodic and ape-

riodic polymers at Hartree–Fock (HF) or semi-empirical

MO level of theory. Since their invention, the applicability

of the elongation method has been extended; e.g., to Kohn–

Sham density functional theory (DFT) [6], to post-HF

correlation calculation as typified by the second-order

Møller–Plesset perturbation (MP2) theory [7], and to the

orbital-restricted open-shell treatment [8]. In addition, its

efficiency has been also improved in terms of localization

schemes [9], a cut-off technique [10], and the quantum fast

multipole method [11]. More recently, Aoki and Gu [12]

proposed a generalized elongation method that can treat

2-D and 3-D systems by virtue of the defrosting scheme.
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Thus, now the elongation method is regarded as a powerful

tool that can treat large (super)molecular systems with

reasonable accuracy.

Coincidentally, in 1991, Yang [13] proposed another

linear-scaling SCF scheme based on the density partition-

ing in the framework of DFT. His divide-and-conquer (DC)

approach was evolved in the one-electron density matrix

formalism with atomic basis functions [14] and then

became applicable to HF or semi-empirical MO calcula-

tions as well as hybrid DFT functionals. However, to the

best knowledge of the authors, the first practical imple-

mentation and assessment of the DC method including HF

exchange interactions (i.e., DC–HF and DC hybrid DFT)

were proceeded by the authors’ group [15, 16]. We have

further proposed the DC-based post-HF correlation

schemes [17–21], open-shell treatment with unrestricted

orbitals [22], energy gradient method [23], and static and

dynamic polarizability calculation method with the time-

dependent coupled-perturbed (TDCP) equations [24].

Our extensions of DC method and implementation to the

GAMESS package [25] are summarized in recent reviews

[26, 27].

The linear-scaling methods, especially the elongation

method, have been also utilized to obtain the nonlinear

optical properties of large systems by the finite-field (FF)

method [28–34]. Although the reported elongation-FF

(hyper)polarizabilities spectacularly agree with the actual

FF results, these calculations were performed with the

semi-empirical or HF theories. In the fragment molecular

orbital (FMO) method [35, 36], which is being popular in

calculations of large biomolecules and molecular clusters,

Mochizuki and coworkers proposed a scheme to evaluate

static and dynamic polarizabilities by means of the TDCP

equations [37, 38], as the authors proposed in the frame-

work of the DC method [24]. However, these methods have

not been applied to the hyperpolarizability calculations so

far. Furthermore, there have been no reports that apply the

DC method to the FF evaluation of the nonlinear optical

properties.

In this paper, we assessed the FF method based on the

linear-scaling DC–HF and correlation theories for calcu-

lating the static (hyper)polarizabilities. The organization of

this article is as follows. Section 2 presents theoretical

aspects of the present study, namely, the FF evaluation of

the static (hyper)polarizabilities and the DC–HF and cor-

relation methods. The present DC–FF method is numeri-

cally assessed in calculations of the polyene chains and

their derivatives in Sect. 3. Finally, we give concluding

remarks in Sect. 4.

2 Theoretical aspects

At first, we briefly summarize the FF evaluation of

molecular (hyper)polarizabilities. The total energy W(E)

in the presence of the external electric field E is expanded

as

WðEÞ ¼ Wð0Þ �
X
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where W(0) is the field-free total energy and gi represents

Cartesian axis (gi = x, y, or z). Thus, the molecular

polarizability (a), first hyperpolarizability (b), and second

hyperpolarizability (c) tensors can be obtained as follows:

ag1g2
¼ o2WðEÞ

oEg1
oEg2

����
E¼0

; ð2Þ

bg1g2g3
¼ o3WðEÞ

oEg1
oEg2

oEg3

����
E¼0

; ð3Þ

cg1g2g3g4
¼ o4WðEÞ

oEg1
oEg2

oEg3
oEg4

����
E¼0

: ð4Þ

For quasi 1-D systems, such as those considered in this

paper, the diagonal elements in the longitudinal direction

(z) are the most important. Numerical expressions for these

elements with energies at five electric fields are given in

[30]:

azz ¼
Wðþ2EzÞ � 16WðþEzÞ þ 30Wð0Þ � 16Wð�EzÞ þWð�2EzÞ

12E2
z

;

ð5Þ

bzzz ¼
�Wðþ2EzÞ þ 2WðþEzÞ � 2Wð�EzÞ þWð�2EzÞ

2E3
z

;

ð6Þ

czzzz ¼
�Wðþ2EzÞ þ 4WðþEzÞ � 6Wð0Þ þ 4Wð�EzÞ �Wð�2EzÞ

E4
z

:

ð7Þ

In this paper, the energies obtained from the DC

calculations are applied to W(E). In the DC–HF theory,

the closed-shell density matrix of the entire system under

the external field E is constructed from subsystem

contributions as
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DðEÞ ¼
X

s

DsðEÞ: ð8Þ

DsðEÞ represents the field-dependent local density matrix

for the subsystem s, which is expanded by subsystem bases

consisting of two types of atomic orbitals (AOs): one is

central AOs [S(s)] that belong to the subsystem s itself,

called the ‘‘central region’’, and the other is environmental

AOs [B(s)] that belong to the neighboring region of the

subsystem s, called the ‘‘buffer region’’. The union of the

central and buffer regions is called the ‘‘localization

region’’. DsðEÞ is obtained by using the uniquely defined

Fermi level eFðEÞ and Fermi function fbtemp
ðxÞ ¼ ½1þ

expð�btempxÞ��1
with the inverse temperature parameter

btemp as

Ds
lmðEÞ ¼ 2ps

lm

X

q

fbtemp
½eFðEÞ � es

qðEÞ�Cs
lqðEÞCs�

mqðEÞ; ð9Þ

where q runs over all subsystem MOs and ps is the partition

matrix defined as

ps
lm¼

1 l2SðsÞandm2SðsÞ
1=2 ½l2 SðsÞ and m2BðsÞ�or ½l2BðsÞandm2 SðsÞ�
0 otherwise:

8
<

:

ð10Þ

CsðEÞ and esðEÞ are the field-dependent orbital coefficients

and energies for the subsystem s, which are the solutions of

the following local eigenvalue problem:

FsðEÞCsðEÞ ¼ SsCsðEÞesðEÞ: ð11Þ

Here, Ss is the local overlap matrix and FsðEÞ represents

the local Fock matrix including the interaction with the

electric field E. The Fermi level eFðEÞ can be determined

by the constraint of the total number of electrons ne:

ne ¼
X

s

Tr½DsðEÞSs�: ð12Þ

One can then obtain the density matrix of the entire system

from Eqs. (8) and (9). The entire Fock matrix F(E) can be

constructed in the usual manner:

FlmðEÞ ¼ Hcore
lm þ E � dlm

þ
X

s

Ds
rkðEÞ½ðlmjkrÞ � 1=2ðlrjkmÞ�; ð13Þ

with two electron integral notation of ðlmjkrÞ ¼RR
l�ðr1Þmðr1Þr�1

12 k�ðr2Þrðr2Þdr1dr2, core Hamiltonian

matrix Hcore, and dipole moment matrix d. As the standard

SCF procedure, Fock matrix and density matrix constructions

are iterated until convergence. Finally, the DC–HF energy

WDC
HF is given as

WDC
HF ðEÞ ¼

1

2

X

s

Tr½DsðEÞfHcore;s þ E � ds þ FsðEÞg�:

ð14Þ

In the DC–DFT calculation, the Fock matrix of Eq. (13)

and the energy expression of Eq. (14) are substituted with

the Kohn–Sham Hamiltonian and energy, respectively.

The DC-based correlation energy is obtained by means

of the energy density analysis (EDA) [39], which adopts

the energy partitioning analogous to Mulliken population

analysis [40]. Hereafter, we omit the external field E

since the effect of E appears indirectly in the correlation

energy through the change in MOs. In the closed-shell

case, the correlation energy is expressed in terms of

active occupied orbitals {i, j} and virtual orbitals {a, b}

as follows [41]:

Wcorr ¼
Xocc

ij

Xvir

ab

ðiajjbÞ½2~tij;ab � ~tij;ba�

¼
Xocc

ij

Xvir

ab

ðiajjbÞ½~Sij;ab þ ~Tij;ab�:
ð15Þ

Here, ~tij;ab represents an effective two-electron excitation

coefficient, and ~Sij;ab ¼ ~tij;ab and ~Tij;ab ¼ ~tij;ab � ~tij;ba are the

singlet- and triplet-type redefined coefficients, respectively.

In the DC calculation, the correlation energy corresponding

to the subsystem s is represented on the analogy of EDA as

follows:

Ws
corr ¼

XoccðsÞ

ij

XvirðsÞ

ab

X

l2SðsÞ
Cs�

li ðlasjjsbsÞ½2~ts
ij;ab � ~ts

ij;ba�

¼
XoccðsÞ

ij

XvirðsÞ

ab

X

l2SðsÞ
Cs�

li ðlasjjsbsÞ½~Ss
ij;ab þ ~Ts

ij;ba�;

ð16Þ

where occ(s) refers to local occupied orbitals in subsystem

s, which have orbital energies lower than the Fermi level

eF, and vir(s) to those having orbital energies higher than

eF. Subsystem coefficients are evaluated in the subsystem s,

namely in the MP2 case,

~ts
ij;ab ¼ �

ðasisjbsjsÞ
es

a þ es
b � es

i � es
j

; ð17Þ

with ~Ss
ij;ab ¼ ~ts

ij;ab and ~Ts
ij;ab ¼ ~ts

ij;ab � ~ts
ij;ba.

In the following applications, we adopted the spin-

component scaled MP2 (SCS–MP2) method, which was

proposed by Grimme [42] as a facile procedure to improve

the MP2 results. In the SCS–MP2 method, the singlet- and

triplet-type contributions are individually scaled with two

parameters wS and wT, giving the energy expression of
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Ws
corr ¼

XoccðsÞ

ij

XvirðsÞ

ab

X

l2SðsÞ
Cs�

li ðlasjjsbsÞ½wS
~Ss

ij;ab þ wT
~Ts

ij;ab�:

ð18Þ

Grimme [42] has proposed the optimized parameters as

wS ¼ 6=5 and wT ¼ 1=3, which we adopted in the fol-

lowing SCS–MP2 calculations.

3 Numerical applications

We assessed the present DC–FF method in the

(hyper)polarizability calculations of polyene chains and

their derivatives with terminal donor or acceptor sub-

stituent, X–(CH=CH)n–H (X=H, NH2, and CN). Aoki et al.

[29] applied the elongation FF method to the same systems

and clarified that the substituent effect is greater in first

hyperpolarizability b than those in polarizability a and

second hyperpolarizability c. We did not discuss the

computational cost of the DC method in this paper because

the costs for a FF calculation is completely proportional to

those for energy calculations, which has been discussed in

many previous papers [15, 18–22, 26, 27]. The z-axis was

set to be parallel to the longitudinal axis of the molecule.

The strength of the applied field, i.e., Ez in (5), (6), and (7),

is set to be 0.0005 a.u. unless otherwise noted. All calcu-

lations presented in this section were performed with the

6-31G** basis set [43, 44]. The structures for X=H were

fixed with uniform bond lengths and angles: 135.7, 146.2,

and 109.6 pm for the C=C, C–C, and C–H lengths,

respectively, and 120� for the \C–C–C and \H–C–C

angles. The geometrical parameters regarding the substit-

uents were determined by locally optimizing the geometry

of X–(CH=CH)2–H at the B3LYP [45, 46] level of theory

with the 6-31G** basis set. In the DC calculation, a C2H2

(or C2H2X, for the edges) unit was adopted as a central

region and several adjacent units were treated as the cor-

responding buffer region. The size of the buffer region is

denoted by nb which indicates that each left and right

buffer region contains up to nb units. The inverse temper-

ature btemp appearing in Eq. (9) was set to 200 a.u.

At first, we examined the buffer-size dependence of the

accuracy of the linear polarizability calculated by the DC–

HF method. Table 1 shows the polarizability azz and field-

free total energy W(0) of a polyene chain, H–(CH=CH)24–H,

calculated by the DC–HF method with nb = 5–11. The

values obtained by the conventional HF method are also

listed at the bottom. The percent error of the DC polariz-

ability, 100ðaDC � aconvÞ=aconv, and the difference error of

the DC energy, WDCð0Þ �Wconvð0Þ, are shown in paren-

theses in Table 1. As previously reported [15, 26], the total

energy error decreases to zero exponentially as the buffer

size increases. Regarding the test system, the energy error

achieves less than 1 mhartree, namely, chemical accuracy,

for nb C 6. In a similar way, the polarizability error

decreases exponentially with respect to the buffer size. This

decay behavior of the errors can be interpreted by con-

sidering the real-space one-particle density matrix,

qðr; r0Þ ¼
P

kr Dkr/kðrÞ/r
�ðr0Þ, falling off exponentially

as r � r0j j ! 1 in non-metallic cases, as discussed in the

previous paper [16] in energy.

The absolute error of the polarizability obtained by

the present DC–FF method is compared with that by

the DC-based TDCP HF (DC–TDCPHF) method [24], in

which the polarizability is evaluated with the z-direction

induced density matrix Dz and dipole moment matrix,

dz
lm ¼ � l zj jmh i, as

azz ¼ Tr½Dzdz�; ð19Þ

in Fig. 1. Although both errors decrease exponentially with

respect to the buffer size, the DC–TDCPHF method tends

to offer fast convergence for the buffer size. However, the

difference between these two methods diminishes as the

buffer size increases. This tendency can be explained by

the denominator of Eq. (5), being E�2
z � 106 a.u. Although

the error of the numerator of Eq. (5), which is quadratic

with respect to the density matrix error, is enhanced in

the DC–FF method, the error of Eq. (19) is only linear to

that of the induced density matrix by the DC–TDCPHF

method.

Next, we discuss the system-size dependence of the

calculated polarizability azz by changing the length of the

polyene chain, H–(CH=CH)n–H for n = 24–84, which is

summarized in Fig. 2. The data obtained by the DC–HF

method with nb = 9 and 11 are plotted together with the

conventional HF data. In the calculations for n C 72, we

used Ez = 0.0001 a.u. as the strength of the applied field

instead of Ez = 0.0005 a.u., because the SCF iteration

failed to converge when adopting a stronger field

strength. As the chain length increases, the calculated

polarizability increases quasi-linearly. It was confirmed

that for the DC result with nb = 9 the discrepancy of the

polarizability from the conventional result increases as

the system size increases. For n = 84, the percent error

becomes 17.4% as compared to 0.4% for n = 24. This

discrepancy significantly diminishes by adopting larger

buffer size, namely for nb = 11, the percent error for

n = 84 is 2.5%.

We also tested the wavefunction-based correlation the-

ories. Figure 3 shows the polarizability azz obtained by the

DC and conventional MP2, SCS-MP2, and coupled-cluster

with single and double excitations (CCSD) calculations of

the polyene chains, H–(CH=CH)n–H for n = 8–48. The

conventional HF and DFT results with BLYP [47, 48] and

long-range corrected BLYP (LC–BLYP) [49] functionals

704 Theor Chem Acc (2011) 130:701–709
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are shown together. Here, we obtained the polarizability

values with energies at three electric fields as

azz ¼
WðþEzÞ � 2WðEzÞ þWð�EzÞ

E2
z

; ð20Þ

with Ez = 0.001 a.u., instead of Eq. (5) using five electric

fields. For DC calculations, we used the dual-buffer scheme

[21] where the HF calculation is performed in the con-

ventional manner and the correlation energy is obtained by

the DC method. The buffer size for the DC correlation

calculation was set to nb = 3. The CCSD results were only

available with the DC method due to its tremendous

computational costs. In the MP2 and SCS–MP2 calcula-

tions, the polarizability error introduced by the DC method

is sufficiently small: the mean absolute percent errors of the

DC–MP2 and DC–SCS–MP2 polarizabilities from the

conventional method are 3.0 and 1.2%, respectively. Since

the CCSD correlation energy error introduced by the DC

method is comparable to the MP2 one [19], the DC–CCSD

result is considered to be most accurate in Fig. 3. The DFT

results adopting the standard functional (e.g., BLYP)

overestimate the polarizabilitiy of large p-conjugated sys-

tems, as is reported previously [49–51]. Although the LC

scheme clearly improves the calculated polarizability val-

ues for these systems, there is still significant difference in

azz value between LC–BLYP and CCSD results. Both DC

Table 1 The polarizability azz and field-free total energy W(0) of a polyene chain, H–(CH=CH)24–H, calculated at the DC–HF/6–31G** level

with nb = 5–11

nb azz [a.u.] (% Error) W(0) [hartree] (Diff.) [mhartree]

5 4,332.4 (?27.8) -1,846.489887 (?1.020)

6 3,687.5 (?8.8) -1,846.490389 (?0.518)

7 3,484.9 (?2.8) -1,846.490732 (?0.175)

8 3,419.9 (?0.9) -1,846.490841 (?0.066)

9 3,398.9 (?0.3) -1,846.490884 (?0.023)

10 3,392.2 (?0.1) -1,846.490899 (?0.008)

11 3,390.1 (?0.0) -1,846.490904 (?0.003)

Conv. 3,389.2 -1,846.490907

The values obtained by the conventional HF method are also listed at the bottom. The percent error of the polarizability and the difference error

of the energy from the conventional results are shown in parentheses

Fig. 1 The buffer-size dependence of the absolute error of the

polarizability azz of a polyene chain, H–(CH=CH)24–H, obtained by

the DC–TDCPHF and the present DC–HF FF methods with 6–31G**

basis set

Fig. 2 The system-size dependence of the polarizability azz of

polyene chains, H–(CH=CH)n–H (n = 24–84), calculated at the DC

(nb = 9 or 11) and conventional HF methods with 6–31G** basis set

Fig. 3 The system-size dependence of the polarizability azz of

polyene chains, H–(CH=CH)n–H (n = 8–48), calculated at the DC

with nb = 3 (symbols) and conventional (lines) MP2, SCS–MP2, and

CCSD (DC only) methods with 6–31G** basis set. The conventional

HF and DFT results are shown together

Theor Chem Acc (2011) 130:701–709 705
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and conventional (SCS–)MP2 methods give better results

than LC–BLYP. In particular, the polarizability obtained

by SCS–MP2 agrees fairly well with that by DC–CCSD in

this system, although the parameters involved in the SCS–

MP2 method were optimized for reproducing the reaction

energies. The DC method not only reduced the computa-

tional cost of the correlation calculation, but also revealed

that the SCS–MP2 scheme works well even for the polar-

izability calculation.

From here, we discuss the calculated hyperpolarizabili-

ties in addition to the linear polarizability. First, we

assessed the field-strength (Ez) dependence of the accuracy

of the (hyper)polarizabilities. Table 2 shows the polariz-

ability azz, first hyperpolarizability bzzz, and second

hyperpolarizability czzzz of a polyene chain with terminal

acceptor substituent, CN–(CH=CH)16–H, obtained using

Eqs. (5), (6), and (7) adopting DC–SCS–MP2 energies

with the fixed correlation buffer size of nb = 6. Only the

correlation energies were obtained in the DC manner. The

values obtained by the conventional SCS–MP2 method are

listed as well. The percent deviations from the result with

Ez = 0.0005 a.u., which we have adopted, are shown in

parentheses. The deviation of azz is within ±0.8% for

Ez B 0.002 a.u. When adopting the stronger electric field

strength of Ez = 0.004 a.u., the calculated polarizability

gives an unphysical result, i.e., a negative value for the

conventional method, because the perturbative expansion of

Eq. (1) breaks down for the stronger electric field strength. On

the other hand, when adopting the weaker electric field

strength of Ez = 0.000125 a.u., the calculated bzzz and czzzz

values significantly deviate from the values for 0.00025

a.u. B Ez B 0.002 a.u. due to the numerical differentiation of

Eqs. (5), (6), and (7) using energies with limited accuracy (the

SCF convergence criteria was set to 2 9 10-7 in the largest

density matrix change). For 0.00025 a.u. B Ez B 0.001 a.u.,

the deviations ofazz,bzzz, and czzzz are rather small, being ±0.0,

±5.5, and ±10.8%, respectively. The following calculations,

therefore, adopted Ez = 0.0005 a.u.

Next, we assessed the buffer-size dependence of the

(hyper)polarizabilitiies, azz, bzzz, and czzzz, and field-free

total energy W(0) of a CN–(CH=CH)24–H system calcu-

lated by the DC–SCS–MP2 method with nb = 3–8 correlation

buffer, which is summarized in Table 3. The values obtained

by the conventional SCS–MP2 method are also listed at the

bottom. All errors given in Table 3 decrease to 0 as the buffer

size increases. We confirmed that the DC–SCS–MP2 method

can evaluate the polarizability accurately with smaller buffer

size than DC–HF does (compare with Table 1). Although

larger buffer size is required to accurately evaluate the first and

second hyperpolarizabilities, it was confirmed that the use of

nb = 6 achieves 2.5% or less errors in hyperpolarizability

values.

Table 2 The field-strength (Ez) dependence of azz, bzzz, and czzzz of a polyene chain with terminal acceptor substituent, CN–(CH=CH)16–H, at the

DC–SCS-MP2/6–31G** level

Ez [a.u.] azz [103 a.u.] bzzz [104 a.u.] czzzz [107 a.u.]

Conv. (% Dev.) DC (% Dev.) Conv. (% Dev.) DC (% Dev.) Conv. (% Dev.) DC (% Dev.)

0.000125 1.553 (-0.0) 1.563 (?0.8) 3.581 (?4.2) 10.77 (?220) 12.49 (?82.1) -228.4 (-3,530)

0.00025 1.554 (?0.0) 1.550 (?0.0) 3.401 (-1.0) 3.324 (-1.0) 6.643 (-3.2) 5.932 (-10.8)

0.0005 1.554 1.550 3.437 3.357 6.861 6.651

0.001 1.553 (-0.0) 1.550 (-0.0) 3.626 (?5.5) 3.531 (?5.2) 7.146 (?4.2) 6.946 (?4.4)

0.002 1.549 (-0.3) 1.546 (-0.3) 4.701 (?36.8) 4.479 (?33.4) 8.582 (?25.1) 8.227 (?23.7)

0.004 -0.294 (-119) 0.582 (-62.5) -86.39 (-2,610) 41.62 (?1,140) 146.8 (?2,040) 80.54 (?1,110)

The percent deviations from the result with Ez = 0.0005 a.u. are shown in parentheses

Table 3 The buffer-size dependence of azz, bzzz, czzzz, and W(0) of a polyene chain with terminal acceptor substituent, CN–(CH=CH)24–H, at the

DC–SCS-MP2/6–31G** level

nb azz [103 a.u.] (% Error) bzzz [104 a.u.] (% Error) czzzz [108 a.u.] (% Error) W(0) [hartree] (Diff.) [mhartree]

3 2.438 (-1.1) 3.321 (-11.0) 1.233 (-11.3) -1,944.767028 (?1.948)

4 2.444 (-0.9) 3.537 (-6.7) 1.313 (-7.2) -1,944.768204 (?0.771)

5 2.455 (-0.5) 3.678 (-3.9) 1.367 (-4.3) -1,944.768738 (?0.237)

6 2.462 (-0.3) 3.763 (-2.2) 1.401 (-2.5) -1,944.768894 (?0.081)

7 2.467 (-0.1) 3.813 (-1.3) 1.422 (-1.4) -1,944.768948 (?0.028)

8 2.469 (-0.1) 3.841 (-0.7) 1.434 (-0.8) -1,944.768966 (?0.009)

Conv. 2.470 3.876 1.449 -1,944.768975

The percent errors of the polarizabilities and the difference errors of the energy from the conventional values are shown in parentheses
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Finally, we compare the molecular size dependence of

the (hyper)polarizabilities of the polyene and its deriva-

tives, X–(CH=CH)n–H (X=H, NH2, CN). Figure 4 shows

(a) the polarizability azz, (b) first hyperpolarizability bzzz,

and (c) second hyperpolarizability czzzz obtained by the DC

and conventional SCS–MP2 calculations of these mole-

cules with n = 12–24. The data for n = 2–10 are also

plotted in the conventional SCS–MP2 results. The

correlation buffer size was fixed at nb = 6. From the SCS–

MP2 result in Fig. 4a, c, the increments in the polariz-

ability azz and second hyperpolarizability czzzz due to

enlargement of the molecular size do not depend on sub-

stituent X. Although the second hyperpolarizability shows

non-linear dependence on the system size for smaller

molecules, it changes to the linear dependence for n C 12.

The first hyperpolarizabilities bzzz of X=H in Fig. 4b are

zero because of the molecular symmetry. The bzzz values

are nearly constant against the change of the chain length

but highly dependent upon substituent X. The DC–SCS–

MP2 method finely reproduces the conventional results.

The mean absolute percent errors of azz, bzzz, and czzzz from

the conventional results become 0.3, 2.3, and 3.5%,

respectively. Although these behaviors of azz, bzzz, and czzzz

are qualitatively consistent with the previous reports [29,

52], the absolute values are considerably different: e.g., azz

values of X–(CH=CH)24–H are around 3,800, 3,200, and

1,100 a.u. by the PM3 [29], HF/6-31G [52], and present

MP2/6-31G** calculations. It was confirmed that the

incorporation of the electron correlation as well as the

polarization basis functions significantly affects the abso-

lute values.

4 Concluding remarks

In the present study, we have implemented for the first time

the FF evaluation of molecular static (hyper)polarizabilities

in the framework of the linear-scaling DC treatment. The

introduction of the external electric field to the DC method

is straightforwardly accomplished by adding the interaction

term to the Fock matrix. The effectiveness of the present

DC–FF method was demonstrated in the calculations of

p-conjugated systems. It was confirmed that the error of the

polarizability introduced by the DC treatment decreases

exponentially to zero with respect to the buffer size, as well

as the total energy. This behavior assures that one will

obtain sufficiently accurate results by adopting an

Fig. 4 The system-size dependence of the (hyper)polarizabilities

[(a) azz, (b) bzzz, (c) czzzz] of the polyene derivatives, X–(CH=CH)n–H

(X=H, NH2, and CN, n = 12–48), obtained by the DC and

conventional SCS–MP2 method. The correlation buffer size was

fixed at nb = 6 in DC calculations

Table 4 The basis-set dependence of azz, bzzz, and czzzz of a polyene chain with terminal acceptor substituent, CN–(CH=CH)16–H, at the DC–

SCS-MP2 level

Basis set azz [103 a.u.] bzzz [104 a.u.] czzzz [107 a.u.]

Conv. [%] DC (% Error) Conv. [%] DC (% Error) Conv. [%] DC (% Error)

6–31G** 1.554 [90.4] 1.550 (-0.2) 3.437 [90.7] 3.357 (-2.3) 6.861 [76.2] 6.651 (-3.1)

6–311G** 1.660 [96.6] 1.655 (-0.3) 3.623 [95.6] 3.526 (-2.7) 7.843 [87.1] 7.626 (-2.8)

6–31??G** 1.675 [97.5] 1.663 (-0.7) 3.790 [100.0] 4.094 (?8.0) 7.928 [88.1] 7.718 (-2.6)

6–311??G** 1.719 1.715 (-0.2) 3.790 3.472 (-8.4) 9.000 8.258 (-8.2)

MA%E (0.4) (5.3) (4.2)

For conventional calculations, the ratios to the 6–311??G** results are given in square brackets. The percent errors of the DC results from the

conventional values are shown in round parentheses, of which MA%Es are given on the bottom
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appropriate buffer size, although the polarizability error of

the DC–HF FF method is larger than that of the DC–

TDCPHF method previously reported [24] when the same

buffer size is adopted. In addition, the DC–FF approach is

applicable to the electron correlation theories where the DC

method performs quite efficiently: this combination

enables the CCSD polarizability evaluation of large sys-

tems. In the present calculations, SCS–MP2 polarizability

agrees well with the CCSD one. We also showed that

the DC–FF method reproduces well the first and second

hyperpolarizabilities for homogenous and heterogeneous

systems. In conclusion, the present DC–FF method is

regarded as a powerful tool for the computer-aided electro-

optical material development.

In this paper, we only focused on the evaluation of static

optical properties. However, for enabling the theoretical

design of actual devices, the evaluation of dynamic optical

properties will be desired. For obtaining dynamic proper-

ties, we have proposed a scheme based on the TDCP

equations [24] within the HF framework. Although its

extension to DFT is straightforward by employing the

induced DFT Hamiltonian matrix instead of the Fock

matrix, it is difficult to extend it to ab initio correlation

level of theories, requiring the expensive procedure for

obtaining analytic derivatives. Rice and Handy [53], for

instance, proposed the pseudo-energy derivatives (PED)

method as a scheme to obtain dynamic properties. The

combination of PED with the DC method is a possible

candidate for the linear-scaling evaluation of the ab initio

dynamic optical properties. Furthermore, we are now

investigating a method to obtain dynamic hyperpolariz-

abilities within the HF/DFT level of theory by extending

the DC–TDCPHF method, which will appear elsewhere.
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Appendix

The basis-set dependence of the present method were

assessed in calculations of the CN–(CH=CH)16–H system.

Table 4 shows the static (hyper)polarizabilities evaluated

by the DC (with fixed buffer size of nb = 6) and

conventional SCS-MP2 method with 6–311G** [54],

6–31??G** [43, 44, 55], and 6–311??G** [54, 55] basis

sets in addition to the 6–31G** set. For conventional cal-

culations, the ratios to the 6–311??G** results are given

in square brackets. The (hyper)polarizability values sys-

tematically converge by improving the basis set, although

azz and bzzz values are less dependent on the adopted basis

set than czzzz value: the 6-31G** results reproduce 90.4,

90.7, and 76.2% of the 6–311??G** values for azz, bzzz,

and czzzz, respectively. One should pay close attention to

the adopting basis sets for the quantitative discussion about

the czzzz value. Looking at the DC results, of which the

percent errors from the conventional values are shown in

round parentheses, the errors introduced by the DC method

are smaller than those by the adopted basis set: the mean

absolute percent errors (MA%Es) are 0.4, 5.3, and 4.2% for

azz, bzzz, and czzzz, respectively. It was also confirmed that

larger errors can be found for the hyperpolarizability values

when adopting a basis set with diffuse functions.
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